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One of the main trends in the modern development of scientific and technological progress 

across all sectors of the socio-economic sphere is the intellectualization of creative activity through 
the modeling of human cognitive processes in decision-making using computer-based systems.   

The use of intelligent technologies in designing and manufacturing products that meet global 
standards is particularly relevant for the Ukrainian industry. Today, any complex product is not 
competitive unless it incorporates an intelligent component, and this trend will only intensify. 
Therefore, leading global manufacturers of modern automated control systems (ACS) have realized 
that focusing on producing high-precision technological equipment without an intelligent component 
does not allow for effective control of poorly formalized processes under a priori uncertainty and 
resource constraints. For example, a key requirement for using such equipment is strict incoming 
quality control of raw materials. However, for raw materials of natural origin, which are widely used 
in chemical, metallurgical, food, and other industries, fulfilling this requirement is complicated due 
to unresolved technical issues in real-time monitoring. The intellectualization of ACS for managing 
complex, weakly formalized technological processes enables them to acquire adaptability based on 
self-learning and pattern recognition.  

At the same time, scientific and methodological issues related to improving the functional 
efficiency of self-learning ACS remain insufficiently explored. The main shortcomings of existing 
self-learning methods in ACS hinder their practical application, including ignoring the overlap of 
recognition classes in the feature space and the lack of optimization of feature dictionaries during the 
learning process. This leads to low accuracy in recognizing the functional states of technological 
processes and the need for excessively large, information-redundant feature dictionaries.   

These methodological and theoretical challenges in analyzing and synthesizing highly 
efficient intelligent ACS highlight the relevance of developing mathematical models for 
classification-based control, evaluating functional efficiency, and optimizing spatiotemporal 
parameters of system operation, including feature dictionary parameters. Additionally, it underscores 
the need for corresponding information technology tools for designing a self-learning decision 
support system (DSS) operating in a factor cluster analysis mode. 

The enhancement of the functional efficiency of automation in controlled technological 
processes distributed in space and time is associated with the development of scientific and 
methodological foundations for designing and implementing adaptive automated control systems 
(ACS) based on self-learning and automatic classification [1–6]. The main characteristics of such 
systems include: 

● The presence of a weakly formalized controlled process, characterized by non-stationarity, 
implicativity, multi-criteria nature, and the influence of uncontrolled factors. 

● The presence of fuzzy input data due to arbitrary (non-zero) initial conditions of the 
functioning of the learning ACS in a monitoring mode under conditions of a priori uncertainty, 
informational, and resource constraints. 

● Closed feedback loops allow operation in a mode that compensates for internal and external 
disturbances to stabilize the controlled process. 

● The presence of local automatic control systems using analog and digital PID controllers. 
● The presence of a decision support system that can operate in two separate (or combined) 

modes: training, in which error-free decision rules are formed based on a training sample, and 
examination, where decisions are made regarding the functional state of the system and the generation 
of control commands. 
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● A multi-threaded operational mode leads to asynchronous information processing, which 
complicates the application of traditional mathematical modeling methods for self-learning decision 
support systems. 

● The ability to self-assess functional efficiency. 
● Knowledge orientation (the ability to acquire and infer knowledge). 
● The use of modern electronic computing systems with high-capacity long-term memory 

and rapid data processing. 
● Ergonomics and the ability to function in an interactive mode. 
● Object-oriented system design methodology. 
An analysis of the current state and development trends in the synthesis and analysis of self-

learning ACS indicates intensive research and implementation of design methods based on artificial 
neural networks [6–8]. There is ongoing improvement in real-time learning and classification 
algorithms [9], natural language processing [10], image and signal recognition [11], and more. 
Among the primary applied tasks solved using neural networks are financial forecasting [12], 
intelligent data processing [13], system diagnostics [14], network operation monitoring [15], data 
encryption [16, 17], and others. The main unresolved challenges in this area include: 

● The problem of interpretability of weight coefficients is associated with the difficulty of 
interpreting the meaning of input signal intensity and weight coefficients. 

● The problem of interpretability of the transfer function (complexity in interpreting and 
justifying the additivity of the argument and the form of the neuron activation function). 

● The dimensionality problem leads to a "combinatorial explosion" when determining the 
structure of neural connections, selecting weight coefficients, and choosing a transfer function. 

● The problem of linear separability, since neuron excitation takes exclusively Boolean 
values (0 or 1) [18]. 

● The interpretability issue reduces the quality of obtained results, the dimensionality 
problem imposes significant constraints on network capacity and structural complexity, and the linear 
separability problem necessitates the use of complex multi-layer networks even for relatively simple 
tasks. A logical step toward resolving the latter situation is developing and implementing control 
systems based on fuzzy artificial neural networks [19]. 

● The insufficient efficiency and modelability of known statistical classification methods 
have driven the intensive development of fuzzy classification methods, initially formulated by L. 
Zadeh [19]. These methods have primarily been applied in hybrid ACS operating under uncertainty 
and the influence of multiple uncontrolled factors [20, 21]. However, issues related to evaluating 
functional efficiency and optimizing the learning process of ACS remain largely unexplored. 

One of the key directions in designing intelligent DSS, which are an integral part of adaptive 
ACS for distributed technological processes, is the development of highly efficient machine learning 
algorithms that enable the construction of error-free decision rules based on high-dimensional training 
matrices [22]. Solving this problem within deterministic or statistical approaches, which form the 
foundation of this research field, is complicated due to the model-based nature of learning algorithms, 
making them unsuitable for practical applications. Ignoring class overlap in recognition and the 
absence of algorithms for optimizing the learning process based on a direct criterion of functional 
efficiency indicate the incompleteness of this learning approach for control systems. The 
deterministic-statistical approach to analyzing and synthesizing self-learning DSS aims to integrate 
the advantages of deterministic and statistical methods while overcoming their limitations [3, 23, 24]. 
The trend toward synthesizing optimal self-learning DSS algorithms through qualitative analysis of 
existing classical approaches and their modifications, considering the current level of computing 
technology development and additional practical application requirements, manifests in the latest 
promising developments in this field, one of which is the information-extremal intelligent technology. 

The core idea of analysis and synthesis methods for self-learning DSS within the framework 
of information-extremal intelligent technology (IEI technology) is optimizing structured 
spatiotemporal parameters of system operation by transforming similarity relations in a fuzzy 
partitioning of the feature space into equivalence relations during the learning process. Optimization 
of system parameters is performed through a hierarchical iterative transitive closure procedure on 
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dynamic mappings within corresponding optimization circuits, aiming to find the global maximum 
of the informational criterion of functional efficiency within its working domain. The construction of 
an error-free classifier based on a training matrix, following the principles of optimal control duality 
[25], reduction [26], and information maximization [3, 4], is performed in a discrete sub-perceptual 
space through permissible transformations of an a priori fuzzy unimodal distribution of pattern 
realizations to fit them into an optimal recognition class container reconstructed in a radial basis. This 
transformation of the a priori distribution of pattern realizations is achieved by deliberately modifying 
feature values. 

A key factor determining the development of artificial intelligence technologies is the growth 
rate in computing power. The increase in modern computer productivity, combined with 
improvements in algorithm quality, enables the practical application of previously developed 
theoretical research. A similar transformation is occurring in intelligent DSS for automating complex 
technological processes, which strive to use relatively simple yet computationally intensive adaptive 
behavior algorithms. 

Methods of IEI technology for the analysis and synthesis of a self-learning (self-adaptive) 
automated control system (ACS), integrated with an intelligent decision support system, are based on 
maximizing the system’s informational capacity by introducing additional informational constraints 
under conditions of a priori uncertainty, fuzzy data, and resource limitations. Further development of 
IEI technology has led to the creation of several methods that complement and extend the capabilities 
of the fundamental method—the functional-statistical testing method – and enable its efficient 
application to solving practical problems in the automation of spatially and temporally distributed 
technological processes. This is achieved by automatically classifying their functional states under 
conditions of a priori uncertainty and generating optimal control messages for the user-operator. 

The key conceptual principles of the information-extreme method for the analysis and 
synthesis of self-learning DSS are as follows: 

● The criterion of functional efficiency for a self-learning ACS is directly linked to a direct 
assessment of the system’s informational capacity, which uniquely determines the functional 
efficiency of the DSS. 

● The self-learning process is conducted within a deterministically statistical framework and 
involves constructing relatively simple, error-free decision rules based on a multidimensional training 
matrix. These rules allow obtaining a full probabilistic assessment of the current functional state of a 
technological process in an examination mode, i.e., directly in an operational mode, approximating 
the limiting value. 

● The self-learning process takes place under conditions of fuzzy compactness of image 
realizations, implying the intersection of recognition classes, which is inherent in the practical tasks 
of automating distributed technological processes. It consists of a targeted iterative multi-cycle 
optimization of the spatiotemporal functioning parameters to successively approach the global 
maximum of the informational criterion of functional efficiency, computed within the working 
(permissible) domain of its function definition to its ultimate maximum, which determines the 
construction of an error-free classifier. 

● The use of logarithmic statistical informational measures, which, according to A.N. 
Kolmogorov [27], possess the property of compressing the volume of a sample random sequence 
without losing statistical regularities, allows the use of representative training samples whose volume 
is an order of magnitude smaller than those required for calculating statistics in multidimensional 
statistical analysis [28]. 

● The object-structured design principles embedded in IEI technology [29] enable the 
inheritance and refinement of its methods, fostering their development within the framework of 
solving the problem of informational synthesis for a broad class of self-learning ACS. 

Thus, IEI-technology methods exhibit a certain degree of universality in designing self-learning 
ACS, enabling both general and specific tasks of their informational synthesis to be addressed. 

Figure 1 illustrates the fundamental principles underlying the information-extreme method for the 
analysis and synthesis of self-learning DSS. Moreover, the method is based on well-known principles of 
the systems approach and pattern recognition [3, 30, 31], as well as object-oriented design [29]. 
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Fig. 1. Structure of the fundamental principles of the information-extreme method for the analysis 
and synthesis of self-learning DSS. 

 
The information maximization principle, which is substantiated by the extremality of sensory 

perception of an image, was experimentally proven by P. K. Anokhin [2]. This principle is 
implemented by introducing additional constraints that increase the diversity of objects. 

The principle of generality of the information criterion of functional efficiency of the system 
directly follows from the logical-gnoseological aspect of the nature of information, which is an 
attribute of control and management processes. This principle determines the expediency of using the 
information criterion to assess the functional efficiency of the system. From a cybernetic point of 
view, the efficiency of the ACS functioning is determined by the information indicator of the degree 
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of correspondence of the control to its functional state. Since dynamic changes in its state characterize 
the system's functioning, then gnoseologically, the informational nature of the criterion of functional 
efficiency is determined by the diversity of data, characteristics, functional states, and modes of the 
system during its intended use. 

The first and second principles of information additivity. The first principle of information 
additivity allows, within the framework of the syntactic approach, to evaluate the value of information 
through its quantitative characteristics [32]. The second principle of information additivity allows for 
determining the operating range of values of the information criteria of functional efficiency that 
satisfies the requirements: the greater the amount of information about the recognized images, the 
greater the reliability of the decisions made. 

The principle of reduction of separate functions. This principle consists in the purposeful 
simplification of a hypothetically existing best separate function of a complex form into a separating 
function of a more straightforward form, the implementation of which does not entail significant 
computational costs. The work [33] substantiates the principle of reduction. It shows that the problem 
of synthesizing complex separating hypersurfaces should be replaced by the problem of synthesizing 
a feature space of lower dimensionality, in which images can be separated even by a linear classifier. 
Such a general formulation is justified if the redundant feature dictionary contains features with 
different informational loads. Reducing their space for a dictionary of informative features can lead 
to decreased recognition reliability due to information loss. The way out of this situation is to extend 
the principle of reduction to a hypothetical - best in the informational sense, but complex in form - 
separating function, provided a simultaneous purposeful transformation of both the distribution of 
image realizations and the parameters of the separating function of a relatively simple form. 

The principle of quantization of the knowledge acquisition process. This principle is 
implemented in the method of functional-statistical tests through step-by-step accumulation of 
knowledge during the learning process. 

The principle of direct dependence of the economic component of efficiency on the 
information capacity of the ACS. The principle is that the maximization of the information IFE, which 
evaluates the functional efficiency of the system, leads to the minimization of average costs during 
its operation. Thus, the system's economic efficiency is determined by its information capacity. 

The principle of a priori insufficiency of hypothesis justification (Bernoulli-Laplace 
principle). A priori information is incomplete in assessing the efficiency of the ACS functioning. 
Therefore, according to the Bernoulli-Laplace principle, adopting equiprobable hypotheses is 
justified. Implementing this principle requires the ACS to make decisions under the worst, in the 
statistical sense, conditions of its functioning. This guarantees that improving the system's operating 
conditions will not reduce its functional efficiency but rather increase it. 

The principle of composition. The essence of this principle is that the mandatory elements of 
the mathematical model of the learning process according to the MFCS are the mapping of the 
universe W of ACS tests onto the set of values of the information criterion E: g: W→E and the 
mapping of the set E onto the set of system functioning parameters G: f:E→G, where f∘g:W→G is 
determined under the condition w∈W. Thus, the condition of complete composition must be satisfied 
in the MFCS: set E is common to all sequences of mapping sets used in iterative procedures for 
optimizing the system functioning parameters, which directly or indirectly affect the functional 
efficiency of the learning ACS. 

The "nearest neighbor" principle guarantees the maximum asymptotic complete recognition 
probability, considered the classifier's potential complete probability. According to the compactness 
hypothesis (crisp or fuzzy), this principle excludes the influence of realizations of distant classes on 
the geometric parameters of the containers being optimized at the ACS learning stage. 

The principle of randomization (reducing to randomness) of input data. This principle allows, 
along with the deterministic characteristics of the ACS functional state, to consider random 
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realizations of recognition images, making it possible to evaluate the learning process's accuracy 
characteristics and calculate the system's information capacity. 

The principle of limited multivariance of decisions made. Iterative procedures for optimizing 
the learning process are based on this principle since the algorithmic information synthesis of the 
ACS means generating a limited number of possible decision options, which are evaluated during the 
learning process according to the information IFE. 

The principles for evaluating the functional efficiency of control systems justify the 
appropriateness of using informational criteria of functional efficiency from both a logical-
gnoseological and cybernetic perspective. They define the essential properties of information as a 
measure of the diversity of functional states and system modes when used for its intended purpose. 

The principles governing the organization of learning and examination processes detail the 
methods for knowledge presentation and accumulation during training and their application during 
the examination mode. Additionally, they justify simplifying the structure of generalized descriptors 
(concepts) of class realizations and the methods for their construction. These principles lay the 
foundation for optimizing the redundant feature vocabulary, formulating the notion of 
informativeness, and determining its relationship with the reliability of decision-making in self-
learning DSS. 

The principle of a priori fuzzy compactness of class realization vectors ensures the transition 
from a traditional a priori crisp partitioning of classes, which is model-based, to its fuzzy variant, 
characteristic of practical control problems for complex organizational-technical objects and 
technological processes. 

The principles for forming a training sample allow determining such samples' representative 
volume, statistical stability, and homogeneity. 

Thus, IEI technology is based on well-known principles of automatic classification and 
decision theory and specific principles reflecting the informational nature of optimal functioning in a 
self-learning intelligent DSS. 

According to the ideology of IEI technology, permissible transformations of a priori fuzzy 
partitioning in the feature space are carried out within a discrete sub-perceptual space, enabling: 

● Enhanced noise immunity of analysis and synthesis methods for self-learning ACS, applied 
to weakly formalized, spatially and temporally distributed technological processes. 

● Targeted transformation of a priori fuzzy partitioning in the feature recognition space into 
a crisp equivalence partitioning of classes, allowing the construction of an error-free classifier based 
on the training sample. 

Let's consider the binary feature recognition space ΩB, a subset of the Hamming space with 
the cardinality Card ΩB=2N, where N is the number of recognition features. In classification analysis, 
the i-th feature Xi is treated as a random variable, the values of which form a repeated sample 

of size n from the population. Then, the set of reflected properties of the m-th functional 
state of the control system and the relationships between its elements, which can be defined in the 
recognition feature space as a specific region, will be considered a recognition class (pattern) 

. The set of such recognition classes forms the alphabet of recognition 
classes. 

In functional-statistical testing within the IEI technology, natural, simulation, or directly 
performed tests during the operation of the ACS are considered using Bernoulli schemes, during 
which the informational capacity of the system is evaluated, and a decision is made regarding the 
sufficiency of their execution. Further, the term "testing" refers specifically to functional-statistical 
testing. 

The deterministic-statistical approach to decision-making requires the setting of both 

normalized (operational) and control tolerances for the features. Let  be the base class, which 
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characterizes the maximum functional efficiency of a learnable ACS, i.e., it is the most desirable for 

the recognition system. Then, the normalized tolerance field  is such that the feature 
value Xi lies within it with probability рі =1 or pi=0, provided that the ACS functional state relates to 

the base class . The control tolerance field  is such that the feature value Xi lies 
within it with probability 0 < рі < 1, provided that the ACS functional state relates to the base class 

. 
In IEI technology, control tolerances are introduced to randomize the decision-making 

process; as for completeness, both deterministic and statistical characteristics of the controlled 
process must be used. The domain of definition for the control tolerance system is the corresponding 
system of normalized tolerances. 

As the vector representation of a pattern , we consider a binary random structured 

vector, which is the j-th row of the binary training matrix : 
 

, , 
 

where  is the i-th coordinate of the vector, which takes a unit value if the feature Xi is 

within the tolerance field , and a zero value otherwise;  is the minimum number of trials 
ensuring the representativeness of the training sample. 

Since, in the case of a normal distribution of pattern realizations, the hypothesis of compactness 
(either strict or fuzzy) of pattern realizations is justified, introducing the concept of a "container" in 
IEI technology is warranted. This concept represents an approximated approximation of the "precise" 
complex closed separating hypersurface of a recognition class, which is reconstructed at each training 
step in the radial basis of the feature space as a regular geometric figure or a combination of several 
regular geometric figures. In this context, the geometric center of the container can be determined by 

any method. One way to define the geometric center of the container of class  is to form the 

reference vector representation of the pattern xm∈ , which corresponds to the mathematical 

expectation of the random realization vectors  of class . The structure of the binary reference 

vector of class  is given by: 
 

xm = <xm,1 , …, xm,і , …, xm,N >,   m = , 
 

where хm,і  is the і-th coordinate of the vector, which takes a unit value if the feature Xi falls within 

the normalized tolerance field  and a zero value otherwise. 

Thus, for the class   the container   within the framework of IEI technology 
serves as its "transparent" shell. The "transparency" of this shell means that the containers may 
overlap when constructing a fuzzy partitioning of the feature space into classes. 

Since the main task of the training stage of the ASC under IEI technology is to construct 
decision rules by partitioning the feature space into recognition classes in an optimal way in the 
informational sense, the evaluation of precise characteristics of the learning process becomes crucial. 
In [3], the average asymptotic (or upper bound) complete reliability of decision-making in the trained 
DSS is defined as:  
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 , (1) 
 

where   is the asymptotic complete reliability of recognizing realizations of class  

;  represents the extreme asymptotic values of the l-th recognition reliability of realizations 

of class  ,  which defines the maximum   of the informational criterion of functional efficiency 
of the learning process; L  –  is the number of statistical hypotheses. 

In formula (1),   is the unconditional probability of accepting the statistical hypothesis 

. According to the principle of insufficient reason (Bernoulli-Laplace principle of insufficient 

grounds), in the absence of additional information about the hypotheses { }  it is reasonable to 

assume they are equally probable, i.e., . 
The efficiency of an Automated Decision Support System (ADSS) depends on its spatial-

temporal operating parameters—information support characteristics that influence the system's 
functional efficiency. The operational parameters optimized during the training process will be 
referred to as training parameters. As an optimization criterion for the training process within the IEI-
technology framework, any statistical informational criterion of functional efficiency can be used, as 
it serves as a natural measure of the diversity of recognition classes and simultaneously acts as a 
functional parameter of the accuracy characteristics of a self-learning distributed integrated ADSS. 

Important operational parameters of ADSS include the parameters of the feature dictionary. 
The optimization of these parameters within the IEI-technology framework is based on the concept 
of informativeness, both of individual features and their groups. In this context, informativeness is 
considered as the degree of influence of a feature on the optimization criterion of the training process, 
which reflects the functional efficiency of ADSS. 

Thus, within the IEI-technology framework, four main groups of features can be 
distinguished: 

● "Informative" features, whose presence in the dictionary increases the value of the criterion 
of functional efficiency; 

● "Non-informative" features, which do not affect the functioning of the self-learning ADSS; 
● "Interfering or misleading" features, whose inclusion in the feature dictionary leads to a 

loss of efficiency in ADSS training; 
● "Latent" features, whose "hidden nature" is due to their low frequency of occurrence, do 

not exceed the selected decision threshold. 
Let us consider the formulation of the problem of information-extreme synthesis of a self-

learning ADSS operating in the factorial cluster analysis mode. 
Let the known a priori alphabet be given in the general case of fuzzy recognition classes, 

characterizes of functional states of the technological process. The training matrix of the «object-

property» type  where  – are the number of recognition and testing 
features, respectively, and a priori, in the general case, redundant in the informational sense feature 

dictionary . Let the base class  characterize the most desirable functional state. It is necessary 
to: 
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1) For an a priori classified fuzzy partition , construct an optimal partition in the sub-
perceptual discrete feature space ΩB through permissible transformations (here and further in work, 

in the informational sense) that correspond to a clear equivalence partitioning of the classes : 
 

 (2) 

 (3) 

 (4) 

 
(5) 

 (6) 

 
(7) 

 

where  – the core of class ;  – the core of class , the closest neighbor to 

class ;  – the current feature dictionary for the a priori alphabet of classes, which contains і 

features, ; – informational criterion of functional efficiency for the training of the self-

learning decision support system;  – the range of criterion of functional efficiency values;  – 

the optimal feature dictionary for М  classes;  � the optimal radius of the container ; 

 – the inter-center code distance for classes  and ;  the optimal radius of the 

container . 
2) At the stage of DSS training in the factorial cluster analysis mode, construct, using 

permissible transformations in the sub-perceptual discrete feature space ΩB, the optimal open, clear 

partition of class equivalence  under the condition:         
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In equation (11), – represents the training criterion of functional efficiency values of the 

system for recognizing class  for the current feature dictionary . 
3) At the examination stage, i.e., directly in the working mode of DSS, assess the current 

functional state of the controlled technological process, and when changing the power of the class 

alphabet, form a representative training matrix , where – is 

the power of the previous optimal dictionary  . 

4) Retrain the DSS for the class alphabet  with feature dictionary optimization.  

5) In case of inconsistency of the current functional state with class , implement a 
correction operator. 

Thus, the specificity of the DSS self-learning task within the framework of IEI technology 
lies in combining the factorial cluster analysis task with the assessment of feature informativeness 
and the optimization of feature dictionary parameters through a multi-cycle structuring based on the 
parameters of the iterative procedure functioning, in search of the global maximum of the self-
learning information criterion of functional efficiency in the working (admissible) domain of its 
function definition. 

Let us consider a mathematical model of an information-extremal DSS that learns with a 
constant cardinality of the feature dictionary. The mathematical model should include, as a mandatory 
component, an input mathematical description, which we will present in the form of a set-theoretic 
structure: 

 

< G, T, Ω, Z, Y, V, F, Ф, П, Н>, 
 

where  – is the operator of the feature space formation;  
the transition operator, reflecting the mechanism of state changes under the influence of internal and 

external disturbances;  – is the operator of a transition to a new type of decision 
rules.  

When substantiating the hypothesis of fuzzy compactness, which occurs in practice, let's 

consider an a priori fuzzy partitioning ÌΩ. We apply the operator   of admissible 

transformations of the input mathematical description of the DSS into the binary feature space  

for the purpose of fuzzy factorization of the feature space: θ: Y® . Let the classification operator: 

®   test the main statistical hypothesis about the belonging of realizations { | j = } to 

class , where  – is the set of hypotheses. By evaluating statistical hypotheses, 
the operator γ: I|l| →ℑ|q| forms a set of accuracy characteristics Á|q|, where q =l2  is the number of 

accuracy characteristics. The operator Á|q| ® E calculates the set of values of the information 
criterion of functional efficiency, which is a function of the accuracy characteristics. The optimization 

loop of the geometric parameters of the partitioning   by searching for the maximum of the 

criterion of functional efficiency of learning to recognize realizations of class  is closed by the 

operator r: E ® . Then, the categorical model in the form of a diagram of mapping sets involved 
in the learning process according to the basic algorithm within the IEI technology, for an a priori 
fuzzy partitioning, has the form shown in Figure 2 [3]. 
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Fig. 2. Diagram of Mapping Sets for the Basic Learning Algorithm 
 
where 
G  space of input signals (factors) acting on the DSS; 
T  set of time instances for information acquisition; 

  recognition feature space; 
Z – space of possible states; 

– set of types of decision rules;  
Ф: G´T´ ´Z ®Y – operator for forming the sample set Y  operator for forming the sample 

set;  

Y  sample set (input training matrix ); 

Х  sample set that forms a binary training matrix , analogous in 

structure to the input training matrix ; 

– operator that regulates the learning process and allows optimizing 
the parameters of its plan, which determine, for example, the volume and structure of tests, the order 
of consideration of recognition classes, and so on. 

The composition of the admissible transformation operator  in Figure 2 consists of 

operator , which forms a sample binary set – the input, in the general case, real-valued binary 

training matrix  of the "process-property" type, and operator , which restores the optimal 
partitioning of the feature space into equivalence classes during the DSS learning process. 
Among the learning parameters that significantly affect the classifier's reliability, one can consider 

the control tolerance fields  for feature values, the selection levels {ρm} of the 
coordinates of the reference binary vectors, the quantization step in time t of image realizations, the 
parameters of the feature dictionary , environmental influence parameters, and others.  

The diagram of mapping sets used in the examination within the IEI technology is shown in 
Figure 3 [3]. 

 

 
Fig. 3. Diagram of mapping sets during DSS operation in examination mode 
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In the diagram (Figure 3), the operator   maps the universe of tests onto a sample set  Х, 

which forms a binary examination matrix , analogous in structure and 

formation parameters to the binary training matrix  . 
Within IEI technology, the iterative optimization of the DSS self-learning process will be 

carried out using the information criterion of functional efficiency, a functional characteristic of 

accuracy. The iterative process of optimizing the geometric parameters of the partition , 

according to the diagram in Figure 2, is implemented by the operator r: E®  by searching for the 
maximum of the criterion of functional efficiency: 
 

, (13)  

 

where  is the set of learning steps of the DSS to recognize realizations of class .  
As is known, the basic idea of IEI technology lies in changing the values of features in the 

sub-perceptual space through admissible transformations. One such transformation is the 
optimization of a control tolerance system on features, which, within IEI technology, consists of 
selecting such a control tolerance system from the term set D that iteratively approximates the value 
of the global maximum of the information optimization criterion E in the working (admissible) 
domain of its function to its largest (limit) value. Figure 2.6 shows a categorical model of control 
tolerance optimization in DSS learning [3]. 

 

 
 

Fig. 4. Diagram of mapping sets in the optimization of control tolerance system using IEI 
technology 

 

In Figure 4, the operators  and respectively evaluate the influence of the optimized parameter 
on the functional efficiency of the DSS and regulate the iterative optimization process.  

Figure 5 shows the contour of operators that directly optimize the control tolerance system and 

includes the contour of optimization of the geometric parameters of the partition . 
 

 
 

Fig. 5. Contour of optimization of control tolerances on features 
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Thus, the optimization of the geometric parameters of class containers is carried out at each 
step of control tolerance system optimization and is an internal cycle of the information-extremal 
algorithm for DSS learning. 

The mathematical model of feature dictionary optimization (feature selection) in IEI technology 
can be described as an additional optimization contour in the learning algorithm. The modified 
mathematical model can be represented as a corresponding diagram of mapping sets (Figure 6): 

 

 
 

Fig. 6. Diagram of mapping sets in the process of optimizing the recognition feature dictionary in 
IEI technology 

 
The contour of feature dictionary optimization is shown in Figure 7. 

 

 
 

Fig. 7. Contour of feature dictionary optimization 
 

In Figure 7, the operator  changes the feature space   according to the 
corresponding algorithm for optimizing the feature dictionary. For the obtained current version of the 
dictionary  in the learning process, its parameters are optimized using either the basic or control 
tolerance system optimization algorithm, the structural diagrams shown in Figures 5 and 6, 
respectively. In this case, the optimization of the feature dictionary is carried out by an iterative 
procedure of searching for the maximum of the objective function using the algorithm: 

 

, 
(14)  

where  – some generalized objective function calculated at the k-th step of DSS learning 
and includes both the information criterion of functional efficiency, the calculation of which is a 
feature of IEI technology and additional conditions (e.g., the minimum dimension of the feature 

space, etc.), which are characteristic of the corresponding feature selection algorithm; – the 

domain of admissible values of the control tolerance field;  – the set of learning steps. 
Additional conditions for calculating the objective function indicate the existence of auxiliary 

contours of feature dictionary optimization, which are related to other optimized parameters of DSS 
functioning. Considering this, the previous mapping diagram (Figure 3) takes the form shown in 
Figure 8, where the dashed-dotted arrows indicate possible additional operators for dictionary 
optimization that use the features of optimizing other parameters of the learning DSS. In this case, 

the operator  deletes a group of features that do not change the criterion of functional efficiency in 
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the control tolerance system optimization process, provided that such optimization was carried out 
for each feature sequentially. 

 

 
 

Fig. 8. Diagram of mapping sets in the optimization of the feature dictionary using additional 
conditions 

 

The operator    shown in Figure 8 checks which features were used to implement the 
maximum-distance or minimum-distance principles for optimizing the geometric parameters of the 
feature space partition. It should be noted that these contours only affect the dictionary optimization 
strategy since they can combine individual features into groups according to their influence on the 
learning DSS.  

Figure 9 shows a categorical model of DSS functioning in the factorial cluster analysis mode 
with self-learning. 

 

 
 

Fig. 9. Diagram of mapping sets in the optimization of the feature dictionary in the factorial cluster 
analysis mode 
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operator for classifying image realizations in the examination mode forms the composition 

, where  – is the operator for calculating the membership function of the image 
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The advantage of categorical models in the form of the above diagrams of mapping sets is that 
they allow, at the stage of system analysis of DSS, that learn (self-learn) in the factorial cluster 
analysis mode not only to establish the relationships between the elements of information support and 
data processing information flows but also significantly facilitate the development of system 
functioning algorithms.  

A necessary and sufficient condition for the implementation of factorial cluster analysis in IEI 
technology is the fulfillment of the inequality: 

 

, 
(15)  

 

where   the averaged membership function of the vector-realization of the recognized class 

to the container ; с  � the threshold value that determines the acceptance of the hypothesis 

of "refusal" to classify .  is the set of hypotheses for an open alphabet, where  – 

is the hypothesis that allows the formation of a training matrix for a new class    and, accordingly, 
the re-training of the system. In this case, for a hyperspherical container constructed in the radial basis 
of the feature space, which is acceptable for an unimodal distribution of class realizations, the 

geometric membership function, for example, for class   can have the form [3] 
 

, 
(16)  

 

where  - the code distance of the vector-realization , being recognized from 

the vertex of the binary optimal reference vector   determined in the learning process for 

the optimal strict partition ;  – the optimal radius of the container of class , calculated in 
the process of DSS learning.  

Within the framework of factorial cluster analysis using IEI technology, the algorithm for 
aggregating a new class with a constant dictionary of recognition features consists of the operator 

forming an additional training matrix , where , which consists of realizations of the 
examination matrix that yielded negative values of the membership function (16) for all classes. Upon 

reaching the required representativeness of the matrix   the operator   launches the process 
of re-training the DSS to construct a new partition of the feature space.  

Thus, implementing factorial cluster analysis algorithms in modern ACS is necessary due to 
the low reliability of assessing the functional states of controlled, weakly formalized technological 
processes that occur under a priori uncertainty. 

As a component of overall efficiency, functional efficiency determines the degree of 
correspondence between the system's functioning according to its working algorithm and the 
fulfillment of the assigned task according to the goal criterion. An important component of the goal 
criterion is the information criterion of the functional efficiency of the system's learning, which is a 
function of the accuracy characteristics of the decisions made by the system. The task of selecting 
and calculating the criterion of functional efficiency is a central problem in evaluating the functional 
efficiency of an intelligent DSS, for which the information approach is a priority in decision-making 
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problems. Within IEI technology, two information measures have found wide application [3, 4]: the 
entropic measure of Shannon, which is an integral measure: 

 

  

 , (17) 
 

and the Kulback measure: 
 

  (18) 
 

where – the first accuracycalculated at the k-th step of learning; – the second 

accuracy;  – the type I error; – the type II error;  – a sufficiently small number to avoid 
division by zero.. 

In the general case, the function's graph constructed according to (17) is a three-dimensional 

surface (Figure 2.12). It is symmetric concerning the bisector of the angle , i.e., at the same 
values as the first and second certainties. In Figure 2.12, the second part of the graph is not shown for 
greater clarity. 

 
Fig. 10. Graph of the dependence of criterion (17) on accuracy characteristics with a two-

alternative decision 
 

The three-dimensional surface of the modified criterion , constructed according 
to formula (18), is shown in Figure 11. 
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Fig. 11. Graph of the dependence of criterion (18) on accuracy characteristics:  
the first and second accuracies  

 
As can be seen from Figures 10 and 11, the functions (17) and (18) are mutually non-unique. 

In practice, this shortcoming is eliminated by introducing a working (admissible) domain of the 
functions, in which the values of the accuracy characteristics – the first and second accuracies – must 
be greater than the corresponding type I and type II errors, i.e., D1≥ 0.5 and D2 ≥ 0.5. The working 
areas in Figures 10 and 11 are shown in the corresponding graphs in gray. Analysis of these graphs 
shows that as both the first and second certainties increase in the working area, the amount of 
information also increases, which is consistent with the second principle of information additivity [4]. 

Thus, an analysis of the functions used as the criterion of functional efficiency of DSS learning 
in IEI technology shows their compliance with the basic requirements for such criteria: 

● They are direct and objective criteria. 
● They are mathematically computable and have a geometric meaning. 
● They characterize the degree of correspondence of the system to its purpose and the 

economic suitability of its use. 
● They are constructive in nature, i.e., they allow the development of methods for analyzing 

and synthesizing the control system. 
● They are universal, i.e., capable of evaluating the functional efficiency of a wide-purpose 

control system. 
● They are sensitive to changes in the functioning parameters and characteristics of the 

learning control system. 
● They allow for optimizing the learning process of the learning control system to maximize 

its asymptotic complete certainty of recognition. 
● They have a functional relationship with the accuracy characteristics of the learning control 

system. 
● They evaluate the reliability of the learning control system. 
● They allow for predicting changes in the functional efficiency and reliability of the adaptive 

learning ACS. 
The construction of an error-free classifier in IEI technology based on the "nearest neighbor" 

principle is possible in a particular case, provided that all image realizations enter the corresponding 
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container of the recognition class, which does not guarantee the necessary performance of machine 
learning, which can be considered as the ratio of the optimal coverage of recognition classes to the 
entire feature space. Therefore, in the general case, the study of the influence of the cardinality of 
both the feature dictionary and the alphabet of recognition classes on the effective and capable 

estimation of the asymptotic complete probability of correct decision-making , 

де   – is the asymptotic (extreme) first and second accuracies of recognition of class , 
realizations, calculated from the results of optimization learning, becomes of significant scientific 
and practical importance.  

It is known that in a binary space, a hypercube approximates a hyperspherical container. For 
the purpose of generalization and convenience of constructing such a container, the existence of a 
pseudo-hypersphere that describes the hypercube, i.e., contains all its vertices, is permissible. This 
allows us to further consider such parameters of container optimization in the radial basis of the 

Hamming space as the reference vector, for example, , the vertex of which defines the 

geometric center of the container , and the radius of the pseudo-spherical container, which 
is determined by the formula: 

 

 , (19) 
 

where  – the i-th coordinate of the binary reference vector ;  – the i-th coordinate of 

a specific vector , whose vertices belong to the surface of the container   . 

For simplicity, the code distance (19) between vectors  and  will be denoted as

, and instead of the term "pseudospherical," we will use the term "hyperspherical" 
container. 

Let ,  be the optimal radius of the class containers  and  respectively, and let

 be the code distance between their centers – reference vectors  and  
respectively. Taking into account the specifics of the binary Hamming space, the following 
assumptions can be made: 

1) The capacity of the binary Hamming space for the feature recognition dictionary  
equals . 

2) The number of binary realizations at a code distance  ( ) from a binary vector 
x is given by 

 

. 
 

3) The number of binary realizations belonging to any container of class  with radius  
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. 
 

At the same time, 
 

, 
 

where  is the number of realizations of an image in a container with radius . 

Thus, in the case of strict partitioning   for M  classes, that is, when , the 

number of corresponding realizations belonging to the containers of classes  and  is given by: 
 

, 
 

while the number of realizations outside these containers is given by: 
 

. 
 

Consider the case of fuzzy partitioning  for two classes  and , which overlap, 

meaning that when (see Figure 12).  
 

 
 

Fig. 12. Geometric characteristics of class containers   і   
 

The calculation of the value  is complicated due to the presence of a region in the binary 

space , where the class containers   and    overlap: 
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Lemma 1. The number of binary realizations located at a code distance   from the binary 

vector   x0 and   from the binary vector x1 is zero if . 

Proof. Let the binary vector x0 be zero. Then, the vector x1 contains  unit 

components and  zero components. A binary realization in Hamming space, located 

at a code distance    from the binary zero vector x0, contains  unit components. The distance 

from this realization to the binary vector x1 depends on the number of   components that coincide 

with the   unit components of vector x1. Then, the smallest code distance will occur when 

the number of such coincidences is maximally possible, i.e., it will be equal to . 

Thus, for , which includes the case , the number of 
corresponding binary realizations is zero, which is proven. 

Similarly, the largest code distance will occur when the number of such coincidences is 

minimally possible, i.e., it will be equal to , if , and  – 

, if . Thus, the number of corresponding binary realizations is 
also zero for the case when 

 

 
 
Thus, the code distance d1, for which the number of corresponding binary realizations is non-

zero, takes values in the interval , if  and 

, or , i.e.,

, if  and , or 

, if  and , or  

,  

i.e. , if  and . 

Lemma 2. The number of binary realizations located at a code distance  from the binary 

vector x0 and  from the binary vector x1 is zero if , where  

Proof. Let the binary vector x0 – be zero. Then, the vector x1 contains  unit 

components and  zero components. Consider the binary realization xmin, zero 

components. Consider the binary realization x1  = . It is clear that the nearest 

binary realization xmin 1, which differs from the given one, is characterized by the code distance 

= 1. This is achieved by changing the value of one of the components of the given 
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realization to its opposite, which simultaneously increases or decreases the code distance  from 
xmin 1 to the binary vector x0 by one. Thus, the number of binary realizations located at code distance 

  from the binary vector x0 and  from the binary vector x1 is zero if . 

Binary realizations {xmin 2 characterized by the code distance = 2, can be formed 
by changing the value of one of the unit components and one of the zero components of the realization 

xmin to their opposites without changing the code distance .  Applying similar reasoning for any 
element {xmin 2} allows us to establish that it is also impossible to form realizations based on them 

with code distances  and .  Analyzing the code distance interval d1, 

previously defined, in this way, we obtain an additional set of values  
(р = 0, 1, ...), for which the number of corresponding binary realizations is zero. 

Let's present the structure of the binary Hamming space graphically (Figure 13). 
Figure 13 shows the structure of a ten-dimensional binary space, in which containers (likely 

referring to Hamming spheres) of two intersecting classes,  and , are reproduced, with radii 

,  respectively, and an intercenter distance =7. In this case, the containers are 
presented in circles of the corresponding radius, from the centers of which diverge, depicted by a 
dotted line, circles of increasing radius from zero to ten, which characterize the dimension of the 
binary space. 

 

 
 

Fig. 13. Structure of the binary Hamming space 
 
In Figure 13, the intersection points of these circles are marked with filled or empty circles 

depending on the number of binary realizations in them. 
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Lemma 3. The number of binary realizations at a Hamming distance  from a binary vector 

x0 and  from a binary vector x1 from a binary vector 
  

, 
 

if    and . 

Proof. Let the binary vector x0 be the zero vector. Then, x1 contains   unit 

components and    zero components. A binary realization characterized by the code 

distances from the lemma's condition contains   unit components. The condition  

  can be satisfied if and only if the coordinates of these unit components coincide 
with the coordinates of the unit components of the binary vector x1.  The number of such binary 

realizations will be equal to the number of combinations that can be formed from   unit and    
zero components, i.e., 

 

   
or 

 

= . 
 

Similarly, under the conditions  and , the binary 

realizations contain  zero components, whose coordinates coincide with the coordinates of the 
zero components of the binary vector x1. The number of such binary realizations will be equal to the 

number of combinations that can be formed from   zero and   unit components, i.e., 
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or 
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where . 
 

Proof. Let the binary vector x0 be the zero vector. Then, x1 contains  unit 

components and  zero components. Consider the binary realizations of the formation 
mechanism presented in Lemma 2. For realizations whose number is non-zero, the condition 

, where р =  0, 1, 2, ..., is possible if and only if the coordinates of  
unit components simultaneously coincide with the coordinates of the unit components of the binary 
vector x1 and the coordinates of р zero components coincide with the coordinates of the zero 

components of the binary vector  x1, if ; or when simultaneously the coordinates of р 
zero components coincide with the coordinates of the unit components of the binary vector x1 and the 

coordinates of  unit components coincide with the coordinates of the unit 

components of the binary vector x1, if . The number of such binary realizations will 
be equal to 

 

 
 
where  
 

 
 
Thus, the number of binary realizations characterized by the code distances according to the 

conditions of the theorem is equal to 
 

, 
 

where . 
 

The distribution of realizations in the pseudo-sphere of the Hamming space with a radius equal 
to 10 code units is given in Table 1. 
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Table 1. Distribution of image realizations in the pseudo-sphere of the Hamming space 

 
d0 d1 0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 
 

0 0 0 

1 0 0 0 0 0 0 
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0 0 

2 0 0 0 0 0 
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3 0 0 0 0 
 

0 
 

0 
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4 0 0 0 
 

0 
 

0 
 

0 
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5 0 0 
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0 
 

0 
 

0 0 

6 0 
 

0 
 

0 
 

0 
 

0 0 0 

7 
 

0 
 

0 
 

0 
 

0 0 0 0 

8 0 
 

0 
 

0 
 

0 0 0 0 0 

9 0 0 
 

0 
 

0 0 0 0 0 0 

10 0 0 0 
 

0 0 0 0 0 0 0 

 
Analysis of Table 1 shows that the Hamming space is not uniform. Furthermore, considering 

the property of combinations , where , it can be stated that the structure of the 
binary space is symmetrical to the main and secondary diagonals of the table. 

A detailed structure of the Hamming space, presented in Figure 9, is shown in Figure 14. 
 

 
 

Fig. 14. Detailed Structure of the Hamming Space 
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Figure 14 shows the structure of a ten-dimensional binary space in which the intersecting 

containers of two classes,   and , are depicted. The diameter of the filled circles corresponds to 
the number of binary realizations characterized by the respective distances from the centers of the 
depicted containers. 

Let the number of binary realizations at a code distance  from a binary vector x0 and  

from a binary vector x1 be denoted as . Then, the number of binary realizations that 

simultaneously belong to the container of class    with radius  ( )  and the container 

of class   with radius  ( ) is equal to 
 

. 
 

Thus, the detailed analysis of the class partitioning structure in the Hamming space 
demonstrates the implicativeness and symmetry of the distribution of class vector-realizations within 
containers built on the radial basis of the feature space.  

This chapter of the monograph, within the framework of IEI technology, presents the 
foundational principles of informational analysis and synthesis regarding the functioning of a self-
learning decision support system capable of operating in factor cluster analysis mode with the 
optimization of the feature dictionary under the conditions of fuzzy data and resource constraints. 
The complex of logically interconnected categorical mathematical models within the IEI technology 
enables the analysis and synthesis of algorithms governing the functioning of self-learning decision 
support system in factor cluster analysis mode. The modifications of informational criteria developed 
within the IEI technology serve as general criteria for the evaluation of functional efficiency, as they 
characterize both the accuracy-related and geometric (distance-based) parameters of the decision 
rules of the DSS, which reconstructs containers in the radial basis of the recognition feature space 
during the learning process. The optimization of the feature dictionary is implemented through an 
iterative, parameter-structured, multi-cyclic procedure for seeking the maximum of the objective 
function, which is computed at the i-th step of the decision support system learning and encompasses 
both the informational criterion of functional efficiency and supplementary conditions that are 
characteristic of the corresponding feature selection algorithm. It is demonstrated that the structure 
of class partitioning in the Hamming space is characterized by implicatively and symmetry in the 
distribution of class realization vectors within the containers constructed in the radial basis of the 
feature space. 

 
REFERENCES 
 
1. Karabegović I., Banjanović-Mehmedović L. Industrial Robots: Design, Applications and Technology. New York : 

Nova Science Publishers, Incorporated, 2020. 463 p. 
2. Korobiichuk I., Ladaniuk A. Technological Process. Mechatronics 2019: Recent Advances Towards Industry 4.0. 

2019. Vol. 1044. P. 214–221. URL: https://doi.org/10.1007/978-3-030-29993-4_27. 
3. Machine Training of the System of Functional Diagnostics of the Shaft Lifting / A. Dovbysh et al. Problems of the 

Regional Energetics. 2019. Vol. 2. P. 88–102. URL: https://doi.org/10.5281/zenodo.3367060. 
4. Resilience and Resilient Systems of Artificial Intelligence: Taxonomy, Models and Methods / V. Moskalenko et al. 

Algorithms. 2023. Vol. 16, no. 3. P. 165. URL: https://doi.org/10.3390/a16030165.  
5. A El-Yacoubi M., Vincent N., Kurtz C. Emerging Topics in Pattern Recognition and Artificial Intelligence. World 

Scientific Publishing Co Pte Ltd, 2024. 
6. Ekman M. Learning Deep Learning: Theory and Practice of Neural Networks, Computer Vision, Natural Language 

Processing, and Transformers Using TensorFlow. Pearson Education, Limited, 2021. 752 p. 

0
oX 1

oX

0d 1d

( ) ( )0 0 1 1,
N
x d x dB

0
oX *

0d
*
00 d N£ £

1
oX *

1d
*
10 d N£ £

( ) ( ) ( )

* *
0 1

2
0 10 1

,,
0 0

o o

d d
N N

x i x jX X
i j

B B
Â

= =

=åå!



Sustainable Development in The Era of Digital Transformation: Challenges and Opportunities For Management 
 

 348 

7. Migliaccio A., Iannone G. Systems Engineering Neural Networks. Wiley & Sons, Incorporated, John, 2023. 243 p. 
8. Anastassiou G. A. Parametrized, Deformed and General Neural Networks. Cham : Springer Nature Switzerland, 

2023. 854 p. URL: https://doi.org/10.1007/978-3-031-43021-3. 
9. Sevakula R. K., Verma N. K. Improving Classifier Generalization: Real-Time Machine Learning Based 

Applications. Springer, 2022. 181 p. 
10. Dyshel M., Lane H. Natural Language Processing in Action, Second Edition. Manning Publications Co. LLC, 2022. 

550 p. 
11. Bellanger M. Digital Signal Processing: Theory and Practice. Wiley & Sons, Incorporated, John, 2024. 397 p. 
12. Sen J., Mehtab S. Machine Learning in the Analysis and Forecasting of Financial Time Series. Cambridge Scholars 

Publishing, 2023. 384 p. 
13. Data-Driven Systems and Intelligent Applications / M. M. Ghonge et al. Boca Raton : CRC Press, 2024. 197 р. 

URL: https://doi.org/10.1201/9781003388449. 
14. Recent Developments in Model-Based and Data-Driven Methods for Advanced Control and Diagnosis / ed. by D. 

Theilliol, J. Korbicz, J. Kacprzyk. Cham : Springer Nature Switzerland, 2023. 351 p. URL: 
https://doi.org/10.1007/978-3-031-27540-1. 

15. Artificial Intelligence for Communications and Networks / ed. by X. Wang et al. Cham : Springer International 
Publishing, 2021. URL: https://doi.org/10.1007/978-3-030-90196-7. 

16. Chalouf M.-A. Intelligent Security Management and Control in the IoT. Wiley & Sons, Incorporated, John, 2022. 
300 p. 

17. Intelligent Cybersecurity and Resilience for Critical Industries: Challenges and Applications / M. Zaydi et al. New 
York : River Publishers, 2025. 360 p. URL: https://doi.org/10.1201/9788770047746 

18. Bishop C. M., Bishop H. Deep Learning: Foundations and Concepts. Springer International Publishing AG, 2023. 
656 p. 

19. New Horizons for Fuzzy Logic, Neural Networks and Metaheuristics / ed. by O. Castillo, P. Melin. Cham : Springer 
Nature Switzerland, 2024. 422 p. URL: https://doi.org/10.1007/978-3-031-55684-5. 

20. Zhao G., Cui H. Cooperative Control of Multi-Agent Systems: A Hybrid System Approach. Springer, 2024. 251 p. 
21. Lauer F., Bloch G. Hybrid System Identification: Theory and Algorithms for Learning Switching Models. Springer, 

2019. 274 p. 
22. Cohen M., Belta C. Adaptive and Learning-Based Control of Safety-Critical Systems. Cham : Springer International 

Publishing, 2023. 208 p. URL: https://doi.org/10.1007/978-3-031-29310-8. 
23. Optimization and Computing using Intelligent Data-Driven Approaches for Decision-Making / I. Ali et al. Boca 

Raton : CRC Press, 2024. 228 p. URL: https://doi.org/10.1201/9781003536796. 
24. Bandyopadhyay S. Decision Support System: Tools and Techniques. Taylor & Francis Group, 2023. 395 p. 
25. Ma Z., Zou S. Optimal Control Theory: The Variational Method. Springer Singapore Pte. Limited, 2022. 363 p. 
26. Model Order Reduction and Applications / M. Hinze et al. ; ed. by M. Falcone, G. Rozza. Cham : Springer Nature 

Switzerland, 2023. URL: https://doi.org/10.1007/978-3-031-29563-8 
27. Vitányi P. M. B. An Introduction to Kolmogorov Complexity and Its Applications (Texts in Computer Science). 

Springer, 2019. 857 p. 
28. Härdle W. K., Simar L. Applied Multivariate Statistical Analysis. 6th ed. Springer, 2024. 628 p. 
29.  Dathan B., Ramnath S. Object-Oriented Analysis, Design and Implementation. Cham : Springer Nature 

Switzerland, 2025. 478 p. URL: https://doi.org/10.1007/978-3-031-71240-1. 
30. Kifle B. M. Artificial Intelligence: A Systems Approach from Architecture Principles to Deployment. MIT Press, 

2024. 
31. Stadler D., Hagmanns R. Pattern Recognition: Introduction, Features, Classifiers and Principles. de Gruyter GmbH, 

Walter, 2024. 348 p. 
32. Sunoj S. M., G R., Nair N. U. Reliability Modelling with Information Measures. Taylor & Francis Group, 2022. 355 

p. 
33. L. Poort, L. A. L. Janssen, B. Besselink, R. H. B. Fey and N. V. D. Wouw, Abstracted Model Reduction: A General 

Framework for Efficient Interconnected System Reduction. IEEE Transactions on Control Systems Technology. 
2025. P. 1-16. https://doi.org/10.1109/TCST.2025.3550027 

 
 
 

 
 
 
 
 
 


	ANALYSIS AND SYNTHESIS OF A SELF-LEARNING INFORMATION-EXTREMEDECISION SUPPORT SYSTEM



